Measurements of Material Properties Using Differential Capacitive Strain Sensors
نویسندگان
چکیده
This paper describes a laterally deflecting micromachined device that offers high sensitivity and wide dynamic range to electronically monitor the thermal expansion coefficient, tensile and compressive residual strain and Young’s modulus of microstructural materials, as well as the temperature dependence of these properties. The device uses sidewall capacitance between interdigitated tines to sense displacement caused by the release of residual stress in bent-beam suspension. Electrostatic force is used to obtain load-deflection profiles. The suspensions and tines are arranged such that output is a differential readout, immune to common mode parasitic capacitance. Analytical and numerical modeling results are presented and the device concept is verified by three different fabrication approaches using polysilicon and nickel as structural materials. Measured values of residual strain, thermal expansion and Young’s modulus are very consistent with measurements taken by other approaches and those reported previously. For example, the residual strain in certain electrodeposited Ni structures was tracked from 68.5 microstrain at 23 C to 420 microstrain at 130 C, providing an expansion coefficient of 8.2 ppm/K; the best fit Young’s modulus provided by the device was 115 GPa. [737]
منابع مشابه
Diagnosis of Delaminated Composites Using Post-processed Strain Measurements under Impact Loading
Potentially having a destructive influence on the mechanical properties of composite laminates, the invisible phenomenon of delamination frequently occurs under impact loading. In the present study, simulating the performance of long-gauge fiber Bragg grating sensors, impact-induced average strains within laminated composites are utilized to develop a delamination identification technique. Firs...
متن کاملDesign of Novel High Sensitive MEMS Capacitive Fingerprint Sensor
In this paper a new design of MEMS capacitive fingerprint sensors is presented. The capacitive sensor is made of two parallel plates with air gap. In these sensors, the capacitance changes is very important factor. It is caused by deformation of the upper electrode of sensor. In this study with making slots in upper electrode, using T-shaped protrusion on diaphragm in order to concentrate the f...
متن کاملMechanical Behavior of a FGM Capacitive Micro-Beam Subjected to a Heat Source
This paper presents mechanical behavior of a functionally graded (FG) cantilever micro-beam subjected to a nonlinear electrostatic pressure and thermal moment considering effects of material length scale parameters. Material properties through the beam thickness direction are graded. The top surface of the micro-beam is made of pure metal and the bottom surface from a mixture of metal and ceram...
متن کاملThermo-elastic Analysis of Functionally Graded Thick- Walled Cylinder with Novel Temperature – Dependent Material Properties using Perturbation Technique
In this work, thermo – elastic analysis for functionally graded thick – walled cylinder with temperature - dependent material properties at steady condition is carried out. The length of cylinder is infinite and loading is consist of internal hydrostatic pressure and temperature gradient. All of physical and mechanical properties expect the Poisson's ratio are considered as multiplied an expone...
متن کاملCapacitive soft strain sensors via multicore-shell fiber printing.
A new method for fabricating textile integrable capacitive soft strain sensors is reported, based on multicore-shell fiber printing. The fiber sensors consist of four concentric, alternating layers of conductor and dielectric, respectively. These wearable sensors provide accurate and hysteresis-free strain measurements under both static and dynamic conditions.
متن کامل